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and 
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A first-principles nonlocal pseudopotential formalism is used to calculate the effective ion-ion 
pair potential U(r )  for liquid cesium at the melting point (28.4"C). The potential U ( r )  is then 
used in a Monte Carlo simulation to obtain the pair correlation function g(r). The static structure 
factor S(4) is calculated using the Fourier transformation of g(r) for q > 0.6(a.u.)-' and 
Fowler's formula for q < 0.6(a.u.)- * and compared with X-ray and neutron scattering data. 
Good overall agreement is found between the calculated S ( q )  and the experimental X-ray curve. 
In addition, the isothermal compressibility limit is satisfied at low q. The first-principles 
pseudopotential form factor and S(4) are used self-consistently in Ziman's theory to calculate 
the electrical resistivity, p, and thermoelectric power Q. Although p differs by a factor 2 with 
experimental data at 30"C, the Q agrees with experiment in magnitude as well as sign. A 
possible explanation is given for the discrepancy in p. 

t This work was supported in part by the division of Materials Research, National Science 
Foundation, Grant No. DMR-8108829. 
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I INTRODUCTION 

M. S. CHUNG, P. H. CUTLER AND F. SUN 

In this paper we report the calculation of the static structure factor and 
the electronic transport properties of liquid cesium using a refined version 
of the Harrison' first principle nonlocal pseudopotential theory. The 
formalism we have used includes (i) a more exact form of T / 0 p w , 2 9 3  (ii) the 
Lindgren4 conduction-core exchange with OPWs for the conduction 
electron density, and (iii) the SSTL5 dielectric screening function to calculate 
the effective ion-ion pair potential U(r).  We have previously used the same 
modified form of the Harrison theory in a systematic study of similar 
properties of the other liquid alkali metals, Li, Na, K and Rb.6-8 In almost 
all instances the calculated properties of these metals have shown good to 
excellent agreement with experiment. 

Prior to the determination of the liquid Cs properties, this formalism is 
used in the calculation of the lattice dynamical properties of the crystalline 
phase of Cs metal. Using the pseudopotential matrix element (k I W I k + q) 
evaluated at 5"K, we obtained the phonon dispersion  relation^,^ elastic 
shear constants and Gruneisen parameters" for crystalline Cs. Although 
no experimental data are yet available for comparison, the calculated 
phonon dispersion curves are in excellent agreement with those obtained in 
the first-principles pseudopotential calculation of Taylor et al.' In addition, 
good agreement is found between the calculated and experimental values 
of the elastic shear constants and Gruneisen parameters of Cs. The latter 
agreement confirms, albeit indirectly, the theoretical phonon spectra for 
Cs metal. 

In computing the properties of liquid Cs metal, a Monte Carlo (MC)12 
simulation was used to generate a large number of configurations of the 
liquid. The pair correlation function g(r) ,  was first determined. However, in 
the larger-r region the asymptotic form of g(r)13 was used instead of the MC 
numerical determination of g(r) .  This is done to avoid an excessively large 
number of simulations. A more detailed justification for this replacement 
is given in Section 111. We next calculated the static structure factor S(q)  
from the Fourier transformation of g(r). In the low-q region S(q)  was also 
computed directly from its definition using the ensembles generated in the 
MC simulation. 

In this region, the numerical evaluation of the Fourier transformation 
of g(r)  becomes unreliable because of the sensitivity of S(q)  to the behavior 
of g(r)  in the large-r region. By contrast, the direct determination of S(q) 
from the definition leads to satisfactory results for low q, even though it is 
carried out only at points given by the periodic boundary condition. Fowler14 
was the first to use the latter technique for S(q) in the low-q region. Day 
et ~ 1 . ' ~  used Fowler's method to obtain the low-4 values of S(q)  for liquid 
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STRUCTURE FACTOR AND TRANSPORT IN Cs 229 

Li, Na and K. Sun et d3  also used the same technique to obtain the low-q 
values of S(q) for liquid Rb. 

There have been several attempts15-17 to evaluate the resistivity p and 
thermoelectric power Q of liquid Cs using Ziman’s theory. In general, these 
lead to considerable discrepancies between the calculated and experimental 
values of both p and Q. Of particular interest is the lack of agreement in 
both the sign and magnitude between the calculated and experimental 
value of Q for liquid Cs metal. For liquid Rb, Sun et ~ l . , ~  using the same 
pseudopotential formalism described in the current work, obtained a 
theoretical value of Q in good agreement with experiment even though his 
value of p was a factor of two different from the experimental data. However, 
for liquid Na and K, Sun4 obtained good agreement for both p and Q. 

The discrepancies in the electronic transport properties for the simple 
liquid metals are usually considered to be due to the use of an inaccurate 
structure factor S(q)  and or form factor w(q) in the Ziman formula. Most 
reported calculations have used the local pseudopotential for w(q) and either 
experimental data or hard-sphere values for S(q). Several authors’ ‘,18,19 

have stressed the importance of the nonlocality in pseudopotential calcula- 
tions. In particular, Day et a l l 3  have showed that the use of a local 
approximation results in a considerable change in the phonon spectra, 
compared to a nonlocal calculation, even for so simple a metal as Na. 
Furthermore, Shimoji” has claimed that no choice of packing fraction and 
radius of hard-sphere can yield good agreement between a theoretical and 
experimental structure factor, and that the use of a pair potential calculated 
from a first-principles pseudopotential should yield a more accurate S(q).  
Ziman’ has also argued that the discrepancy between calculated and 
experimental values of p and Q found by Siindstrom15 for Cs is probably 
due to the use of inaccurate experimental structure factor in the low-4 
region where it must be obtained by extrapolation. 

It is important to note that in the present work we have obtained a fully 
nonlocal pseudopotential calculated from first-principles and have used 
this pseudopotential in a MC simulation for the static structure factor. 
These have then been used in the Ziman theory to calculate, “self- 
consistently”, the electronic transport properties of liquid Cs. By “ self- 
consistent” we mean the same pseudopotential has been used for the form 
factor and for the static structure factor which is determined in the MC 
simulation. 

In Section 11, we outline the first-principles nonlocal pseudopotential 
formalism. The MC method for obtaining g(r )  and S(q) is described in 
Section 111. In Section IV, we describe the calculations, using the Ziman 
theory, for the resistivity p, thermoelectric power Q, and thermoelectric 
parameter 5. The results and conclusions are discussed in Section V. 
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II PSEUDOPOTENTIAL AND PAIR POTENTIAL 

M. S. CHUNG. P. H. CUTLER AND F. SUN 

The effective ion-ion pair potential U ( r )  is calculated from the following 
equations : 

wht-e F(q)  is the energy-wavenumber characteristic, iz, is the volume per 
ion, and z* is the effective valence and is associated with the orthogonaliza- 
tion hole. The first term in Eq. (1) is the direct Coulombic interaction 
between ions, while the second term is the indirect electronic contribution 
due to the electron-ion interaction. The energy-wavenumber characteristic 
F(q)  is given by 

where W is the nonlocal pseudopotential and the function G(q)22 is intro- 
duced to account for the screening effect of the conduction electrons. 

In the off-diagonal matrix element, W can be separated into two parts, 
the bare potential W E  and the screening potential Wsc: 

(3) ( k l W l k  + q) = (kIWEIk + q) + (k lWSC)k + q). 

(k lWElk + q) = (kl VClk + q) + (kl WRlk + q), 

The bare potential matrix element is also separable into the two contri- 
butions, 

(4) 
where V C  is the crystal potential arising from the nucleus and the charge 
distributions of core and conduction electrons, and W H  is the repulsive 
potential term that results from the orthogonalization of the conduction- 
electron states to the core states. 

The crystal potential Vc  has the following five contributions: (i) the 
potential due to the ion core, (ii) the conduction-band-core exchange, (iii) the 
correlation between conduction and core electrons, (iv) the potential due 
to the single OPW states of the conduction electron density, and (v) the 
screening due to the multiple OPW expression for the conduction electron 
states. The repulsive term (k I W R  I k + q) is given by 
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STRUCTURE FACTOR AND TRANSPORT IN Cs 23 1 

where E n ,  and In l )  are the eigenvalues and eigenfunctions of the ion, 
respectively, and P is the projection operator, P = 1 \ n l ) ( n l l ,  onto 
the core states. n. 1 

The explicit k-dependence of (k I W R  I k + q) reflects the nonlocal property 
of the pseudopotential W .  Taylor et a/.’’ have stated that nonlocality in a 
pseudopotential will produce qualitative changes in the physical properties 
compared to that calculated with a local pseudopotential. Similar views 
have been previously expressed by Sun et ~ l . , ~  Day et ~ 1 . ’ ~  and Bertoni 
et a l l 8  They have argued that nonlocality is important even for simple 
metals. For this reason we have consistently used the fully nonlocal pseudo- 
potential throughout the calculations for the alkali metals including Cs. 

The screening potential matrix element is given by 

(6) + 2e2(1 ... - G(4)) 1 (kl WRlk + q)d3k 
7t2~(q)q2 (h’/2m)(k2 - ( k  + 4)’)’ 

where ~ ( q )  is the dielectric response function for the interacting conduction 
electron gas. The first term in Eq. (6) is simply the screening of the crystal 
potential while the second is the screening of the repulsive potential which 
has to be considered for the nonlocal pseudopotential formalism. 

For the interacting electron gas, E ( q )  is given by 

4 4 )  = 1 + c1 - G(d1C&H(4> - 11, (7) 

where cH(q)  is the free-electron or Hartree dielectric constant, and G(q), 
which accounts for the exchange and correlation effects, is the function 
derived self-consistently by Singwi et a/. (SSTL).5 The SSTL screening 
function is used because it satisfies the compressibility sum rule and yields 
reasonable values of the pair correlation function g(r)  for small r .  

To calculate F(4), the first-principles nonlocal pseudopotential scheme 
requires as input only the lattice constant, atomic number and atomic 
mass, and the eigenenergies and eigenfunctions of the ion. For liquids, the 
“lattice constant” is defined as the mean separation between neighboring 
atoms. In the present work, the “lattice constant” is determined from the 
measured density of liquid Cs at the melting point, which is equal to 1.843 
g / ~ m ~ . ’ ~  The core energies and wave functions of Cs’ were calculated using 
the Herrnan-Skillmar~’~ atomic program for Hartree-Fock-Slater theory. 
Using Eq. (l), we have evaluated V(r) of liquid Cs at the melting point. 
This is given in Figure 1. 
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232 M. S. C H U N G ,  P. H. CUTLER A N D  F. S U N  

r (Bohr units) 

F I G U R E  1 
d,, = 1.843 g / ~ m ~ . ' ~  mean separation a = 6.209 A, and effective valence z* = 1.224. 

Pair potential U ( r )  of liquid Cs at melting point (28.4"C) with mass density 

Ill MONTE CARL0 CALCULATION 

The simulated system consists of 216 particles enclosed in a cubic box of edge 
length L of 55.89 atomic units (a.u.) with periodic boundary conditions. 
This system has the same mass density as liquid Cs at the melting point. We 
have generated about 300,000 configurations among which approximately 
half are accepted as members of the Markov chain. (Detailed discussions of 
the formal MC method have been given by Wood.'2) 

The MC scheme first evaluates the cumulative function G ( r )  which 
represents the total number of particles within a distance r from the origin. 
The pair correlation function g(r )  is then obtained from G(r)  using the 
relation 

1 d G ( r )  
g ( r )  = -- 

4 x r 2 n ,  d r  ' 

where no is the average number density. The calculation for g(r)  is not 
started until the system has evolved to a stable liquid structure that occurs 
after approximately 200,000 configurations. For r 2 19 a x ,  i.e., in the 
region beyond the boundary of the simulated system, g(r )  is replaced by 
the asymptotic f ~ r r n ' ~ , ~ '  

g ( r )  z 1 + B cos(2kFr + 4 ) / r 3 ,  (9) 
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STRUCTURE FACTOR AND TRANSPORT IN Cs 233 
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FIGURE 2 Pair correlation function g(r)ofliquid Cs at melting point. Montecar lo  simulation 
is used to find g ( r )  for r < 19 a.u. For r > 19 a.u., the asymptotic form of g ( r )  is used: g ( r )  = 
1 + B cos(2kFr + 4)/r3,  where B = - 1496 ( a . ~ . ) ~  and 4 = -9.25. 

where the constants B and 4 are chosen so that there is a smooth transition 
between the two portions of the g(r) curves given by Eqs (8) and (9). The 
resultant curve of g(r) is shown in Figure 2. 

Using the calculated values of g(r), the structure factor S ( q )  is evaluated 
from the Fourier transformation, 

qq) = 1 + S e i y g ( r )  - 11d3~. (10) 

Even though Eq. (10) is an exact relation, it is difficult to calculate accurate 
values of S(q)  for low q. This is a consequence of the fact that the low-q 
values of S(q)  are sensitive to the large-r behavior of g(r), which is approxi- 
mated by Eq. (9). In addition, Eq. (10) cannot be numerically integrated 
over the whole infinite range of r. As in our previous ~ o r k s , ' , ~ * ' ~  we have 
circumvented this difficulty by calculating S(q) directly from the definition 

where N is the number of particles (i.e., 216), ri are coordinates of ith particle, 
and ( ),, denotes an ensemble average in the configuration space. This 
procedure yields results which are consistent with the Fourier transformation 
calculation. Furthermore, in the low q-region, the use of Eq. (1 1) produces 
a monatomic curve whereas the Fourier transformation method produces 
unreasonable oscillations. Therefore we have used the low-q values of 
S(q)  obtained from Eq. (1 1) in the calculation of electronic transport 
properties. 
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234 M. S. CHUNG, P. H. CUTLER AND F. SUN 

Thermodynamically, the long wave-length limit of the structure factor 
S(0) is given by 

where xT is the isothermal compressibility. In this work the limiting value 
S(0)  is obtained by extrapolating the calculated curve of S(q)  to q = 0. 
With the righthand side of Eq. (12) evaluated using the experimental data 
for x T ,  we compare the extrapolated value of S(0)  to other theoretical and 
experimental values given in Table I. It is seen that the agreement is quite 
satisfactory. 

S(o) = kB TXT 7 (12) 

TABLE I 
Temperature T(" K). particle density n s ( A  - 3 ) ,  S(O)," and no ksTzTb 

Theory Present Work 302 0.00835 0.020 0.022' 
0.024' 

EvansJ2 302 0.00833 0.027 
~ 

Exp. HuijbenZ6 303 0.026 0.022 
FaberJ1 303 0.028 

" Obtained by extrapolating the S ( q )  curve. 
Calculated from experimental values of zT. 
Used Huijben's data zT = 62 x lo-'' cm2/dyne. 
Used Faber's data zT = 69 x cm2/dyne. 

0 

0 

0 X-RAY DIFFRACTION 
A NEUTRON DIFFRACTION 

-X- DIRECT CALCULATION 

0.5 1 .o 1.5 2.0 
q (Eohr units)-' 

FIGURE 3 Structure factor S(9) of liquid Cs at melting point. The experimental data are 
the X-ray diffraction measurements (0) of Huijben et aLzb and neutron diffraction measure- 
ments (A) of Gingrichet a/.'' at 30°C. Theoretical values are obtained from the direct calculation 
of the definition (- x - and -0-) and Fourier transformation oly(r) (full curve). 
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STRUCTURE FACTOR AND TRANSPORT IN Cs 235 

The stability of the MC simulated systems can be verified by first exam- 
ining the curves of g(r )  and S(q) .  Both curves should be smooth throughout 
the entire region. This is confirmed by the curves in Figures 2 and 3. In 
addition the thermodynamic relation, Eq. (12), should be satisfied if the 
simulated system is equivalent to, or closely approximates, the real system. 
We further verified the stability of the simulated liquid state by examining 
the electronic transport properties calculated as a function of increasing 
number of configurations in the statistical ensemble. 

IV ELECTRICAL TRANSPORT PROPERTIES 

The Ziman free electron theory of liquid metals leads to the following 
expressions for the electrical resistivity p, thermoelectric power Q, and 
thermoelectric parameter t :  

and 
1 

(SIwI’) = Jo S(q)  I N S ,  k F )  1 2 4 ( q / 2 k F ) 3 d ( q / 2 k F > ,  (16) 

where w(q, k F )  is the screened pseudopotential form factor (klwlk + q)EF7 
nz* is the effective mass, and k ,  and E F  are the Fermi wavevector and Fermi 
energy, respectively. Equation (15) can be written in the form 

5 = 3 - c 1 -  p, (17) 

where 

and 
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236 M. S. CHUNG, P. H. CUTLER AND F. SUN 

TABLE I1 
Electrical resistivity p(pQ cm), thermoelectric power Q(pV/"K) and 

thermoelectric parameter 5. 

T K )  P Q 5 
Theory Present Work 302 18.2 5.51 -1.12 

S ~ n d s t r o m ' ~  303 12.7 -5.9 +1.1 
William'6 9.1" 

20.4' 
RaoI7 18.9' 

37d 

Exp. 302 3634 
KendaI3* 302 6.5 - 1.31 

a Used Heine-Abarenkov pseudopotential. 
Used the Optimized model potential. 
Used adjustable parameters associated with local pseudo- 

potential calculations of the phonon spectra. 
Used adjustable parameters chosen arbitrarily. 

The term p is the contribution from the k-dependence of the form factor 
evaluated at the Fermi energy and is usually neglected in the calculation of 5. 
For the alkali metals S i ind~t rom'~  has used the approximation of 3 - a 
to calculate 4. He found fair agreement with the experimental values except 
for Cs. Ziman2''') has pointed out that the discrepancy for Cs is probably 
due to the use of the inaccurate experimental structure factor. In the present 
work we also evaluate the thermoelectric parameter 5, neglecting p. The 
results of the present calculations are given in Table 11. These are discussed 
in the next section. 

V RESULTS AND DISCUSSIONS 

As shown in Figure 3,  the theoretical curve for S(4)  is generally in good 
agreement with the X-ray experimental data of Huijben et ~ 1 . ~ ~  except for 
the height of the main peak, SmaX(4). The computed value of SmaX(q) is about 
0.5 lower than the X-ray experimental value. However, the main peak 
occurs at q = 0.747 (ax.)- ', which is the same as obtained from the X-ray 
data. In Figure 3, we also show, for purposes of comparison, the curve of 
S(4)  obtained from the neutron scattering data of Gingrich et d2' In 
particular, Huijben has stressed the significant difference between the X-ray 
and neutron scattering determinations of the S ( q )  curve. 

It has been suggested by Egelstaff 2 8  that the difference in the peak heights 
between the two experimental values of S(q)  is attributed to the different 
correlation effects of electrons and ions. From this point of view, the present 
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STRUCTURE FACTOR AND TRANSPORT IN Cs 231 

results are expected to be more consistent with the X-ray rather than the 
neutron data because the present calculations of S(q)  are done with the 
pair potential that includes the electron correlation effects. For S(4) 
calculated by Day et a l l 3  for Na and K and by Sun et ale2 for Rb, the peak 
heights are also somewhat smaller than the X-ray experimental values. 
This, combined with the present results for Cs, suggests a systematic 
discrepancy in the height of the main peak of S(q)  between the X-ray 
measurements and theoretical calculations. A possible reason for this is 
the overestimation of the effect of the depletion of core electron density, 
i.e., orthogonalization in the pseudopotential formalism. This 
implies a reduction in the correlation effects of the core electrons, which, in 
turn, contributes to the broadening of the peak and the lowering of the 
whole curve. A more rigorous theory, including a self-consistent treatment 
of the core electron density, is probably necessary to resolve this discrepancy. 

According to the X-ray experimental data of Huijben et a1.,26 Zei29 and 
Greenfield,30 the main peak of S(q)  occurs at about q z 2.24kF for all 
alkali metals. This is also obtained from the theoretical S(q)  in the present 
work for Cs. Similar results can be obtained in the calculations of Day 
et al. and Sun et al. for the S(4) curves of Na, K and Rb. We note that the 
empirical relation, qmax x 2.4kFz- is reasonably satisfied for all the 
simple and non-transition polyvalent metals, where qmax is the position of 
the main peak and z is the valence of the ion. The observation that qmax 
can be given empirically in terms of k, is significant since no prediction of 
qmax is theoretically known for liquid metals. In addition, it suggests that the 
present calculation of S(q) is probably more consistent with X-ray rather 
than neutron scattering data, in agreement with our previous arguments. 

The limiting value S(0) = 0.020 is obtained by extrapolating S(4) to the 
point q = 0 (see Table I). For low q, the points (4, S(q) )  are evaluated 
using Eq. (1 1). The values of q are determined from the periodic boundary 
conditions in the Monte Carlo simulation. The first five points are (0.1124, 
0.02 133), (0.2248, 0.03458), (0.3372, 0.04064), (0.4496, 0.0748 1) and (0.5620, 
0.14459). It is seen from Table I that the thermodynamic relation expressed 
in Eq. (12) is better satisfied by Huijben’s value of zT, using our value of S(O), 
rather than Faber ’~ .~’  Evans3’ obtained S(0) analytically for all alkali 
metals, using Aschcroft’s empty-core local pseudopotential, 

- (4.nze2/q2)cos(qR,), 

with the core radius R, as an adjustable parameter. 
As shown in Table 11, the present value of Q = 5.51 pV/”K is in good 

agreement with experiment. It is important to note that the present value of 
Q is positive, which agrees with the experimental result; this is in contrast 
with other theoretical predictions.” However, the resistivity p = 18.2 pi2 cm 
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238 M. S. C H U N G ,  P. H. CUTLER A N D  F. S U N  

is in disagreement with the experimental value p = 36 $2 cm. It is interesting 
to note that the calculated resistivity is rather close to the experimental 
value of p = 21.7 pln cm for solid Cs metal. Sun et al. also obtained, for 
liquid Rb, similar results as those obtained here for liquid Cs. However, he 
found good agreement between the calculated and experimental values of 
p and Q for both Na and K. 

Since the d-band states can be a factor in the electronic transport properties 
for the heavier alkali metals, Moriarty3 has developed the zero-order 
pseudoatom model to consider s-d hybridization. He has found that the 
agreement of the resistivity with experiment is improved for the heavy alkali 
and alkali-earth metals although the agreement is less satisfactory for the 
group IIIb metals when the hybridization is included. It is also found that 
hybridization can result in poorer agreement for some properties, e.g., the 
pseudopotential form factor. In addition, the phonon dispersion relations 
of Rb using the pseudoatom technique with the s-d hybridization do not 
yield better agreement with experiment than obtained with the pseudo- 
potential calculation of Sun et a1.' This is illustrated in Table 111. 

It is known2'V3' that Ziman's NFE formula is particularly sensitive to 
small changes in the pseudopotential near 2k,.  The low-q values of S(q)  is 
also crucial for the electronic transport properties of liquid metals. Faber3 
has discussed the different circumstances under which Ziman's formula of 
resistivity is not able to yield satisfactory results even though both the 
pseudopotential and structure factor are considered correct. For one of 
those cases, he considers the possibility that the density of states n(E)  for 
liquid metals will be different from that for free electrons. Experiments such 

TABLE I11 
Phonon frequencies of Rb and C s  at several symmetry points (in 

10" Hz). 

L[lOO] L[IlO] T,[lIO] T,[llO] 

Rb Sun et a/." 
Moriartyb 
Moriarty' 
 EX^.^ 

Cs Chung et 
Taylor ei a/. ' 
Moriartyb 
Moriarty' 

1.47 
1.37 
I .40 
1.39 

1.06 
1.03 
I .06 
1.09 

1.64 
I .60 
1.63 
1 S O  

1.20 
1.20 
1.27 
1.29 

- 

0.35 
0.27 
0.27 
0.34 

0.23 
0.24 
0.22 
0.21 

~ 

0.97 
0.92 
0.93 
0.96 

0.72 
0.71 
0.69 
0.70 

Used the same pseudopotential formalism explained in the pre- 

Pseudoatom model calculation without s-d hybridization. 
Pseudoatom model calculation with s-d hybridization. 
J .  R. D. Copley and B.  N .  Brockhouse.Can. J .  Phys. 51,657 (1973). 

sent work or in the phonon calculation of Chung et for Cs. 
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as Knight shift, optical absorption and Hall effect on free-electron-like liquid 
metals have not always shown the features of the free electron density of 
states,2 1 .  3 1.34 e.g., ~ ( E ) E E ” ~ .  A possible explanation of these ambiguous 
results can be suggested by treating a liquid metal in terms of a disordered 
system t h e ~ r y . ~ ~ . ~ ~  The topological disorder, i.e., random potential, in 
liquid metals can lead to the loss of the long-range order or fluctuations 
in the particle density. This mechanism can produce changes in the shape of 
n(E)  and, at a critical value of the density fluctuation (i.e., randomness), can 
cause itinerant (i.e., Bloch) electron states to localize. A change in the 
magnitude of n(E)  is thus always probable for liquid metals. However, small 
variations in n(E) are known to produce little effect on the electronic transport 
properties.*l M ~ t t ~ ” ~ )  has argued that the mean free path would become 
comparable with the electron wavelength if the ratio n(E)/n,,,,(E) is smaller 
than one half. He has further argued that even the localization of a Bloch 
state must occur for small values of the density ratio. For that situation, the 
basic assumption of a NFE approximation for Ziman’s theory will be 
meaningless and a different approach, such as the T-matrix formalism, is 
required. 

In a recent paper, Ito37 has presented an analysis, based on the Roth3* 
theory, which he claims leads to several corrections of Ziman’s formula; in 
particular, he asserts that the free electron mass in the formula is to be 
replaced by an effective mass defined from the relation between the group 
velocity and the “liquid dispersion”, where the latter is determined by the 
singularity of the one-particle Green function. However, he did not present 
any actual calculations from which to estimate the significance of his 
effective mass corrections. 

In summary, the present work for Cs as well as that of Sun et al. for Rb 
seems to indicate the necessity of some modifications or corrections to 
Ziman’s formula when applied to the heavy alkali metals. To explain the 
electronic transport properties in these metals, it may be necessary to use an 
effective medium theory such as that developed by Roth for the electronic 
structure of liquid metals. The inclusion of s-d hybridization, as suggested by 
Moriarty, in a more general pseudopotential formalism may also contribute 
to an accurate theory of the electronic transport properties for the heavier 
liquid alkali metals. 
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